Yes, they can! Machine learning models predict leverage better than linear models and identify a broader set of leverage determinants. They boost the out-of-sample R2 from 36% to 56% over OLS and LASSO. The best performing model (random forests) selects market-to-book, industry median leverage, cash and equivalents, Z-Score, profitability, stock returns, and firm size as reliable predictors of market leverage. More precise target estimation yields a 10%–33% faster speed of adjustment and improves prediction of financing actions relative to linear models. Machine learning identifies uncertainty, cash flow, and macroeconomic considerations among primary drivers of leverage adjustments.